Current Issue : January - March Volume : 2011 Issue Number : 1 Articles : 4 Articles
Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline....
The soil biota benefits soil productivity and contributes to the sustainable function of all ecosystems. The cycling of nutrients is a critical function that is essential to life on earth. Earthworms (EWs) are a major component of soil fauna communities in most ecosystems and comprise a large proportion of macrofauna biomass. Their activity is beneficial because it can enhance soil nutrient cycling through the rapid incorporation of detritus into mineral soils. In addition to this mixing effect, mucus production associated with water excretion in earthworm guts also enhances the activity of other beneficial soil microorganisms. This is followed by the production of organic matter. So, in the short term, a more significant effect is the concentration of large quantities of nutrients (N, P, K, and Ca) that are easily assimilable by plants in fresh cast depositions. In addition, earthworms seem to accelerate the mineralization as well as the turnover of soil organic matter. Earthworms are known also to increase nitrogen mineralization, through direct and indirect effects on the microbial community. The increased transfer of organic C and N into soil aggregates indicates the potential for earthworms to facilitate soil organic matter stabilization and accumulation in agricultural systems, and that their influence depends greatly on differences in landmanagement practices. This paper summarises information on published data on the described subjects....
Laccases are an interesting group of multi copper enzymes, which have received much attention of researchers in the last decades due to their ability to oxidise both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. This makes these biocatalysts very useful for their application in several biotechnological processes, including the food industry. Thus, laccases hold great potential as food additives in food and beverage processing. Being energy-saving and biodegradable, laccase-based biocatalysts fit well with the development of highly efficient, sustainable, and eco-friendly industries....
Field research (2003ââ?¬â??2005) evaluated the effect of wheat row spacing (19 and 38 cm) and cultivar on double-cropped (DC) soybean response, 38-cm wheat on relay-intercrop (RI) response, and wheat cultivar selection on gross margins of these cropping systems. Narrow-row wheat increased grain yield 460 kg ha-1, light interception (LI) 7%, and leaf area index (LAI) 0.5 compared to wide rows, but did not affect DC soybean yield. High yielding wheat (P25R37) with greater LI and LAI produced lower (330 kg ha-1) soybean yields in an RI system than a low yielding cultivar (Ernie). Gross margins were $267 ha-1 greater when P25R37 was RI with H431 Intellicoat (ITC) soybean compared to Ernie. Gross margins were similar for monocrop H431 non-coated (NC) or ITC soybean, P25R37 in 19- or 38-cm rows with DC H431 NC soybean, and P25R37 in 38-cm rows with RI H431 ITC soybean in the absence of an early fall frost....
Loading....